
1

Number Systems in
Microprocessors
1/23/25

TECH 3233

Decimal – Base 10

 Decimal has digits 0 - 9.

 Number system we commonly use in our day to
day lives.

OnesTensHundreds

100101102

Binary – Base 2

 Binary has digits 0 and 1.

 Commonly used in digital logic, computers and
networking.

1248163264128

2021222324252627

1

2

3

2

Example Decimal to Binary
Conversion

(Subtraction Method)

 Convert 100 to binary
using weighting
factors.

1248163264128

2021222324252627

Example Decimal to Binary
Conversion

 Convert 200 to binary
using weighting
factors.

1248163264128

2021222324252627

Convert 100 to binary
(division method)

Convert 100 to
binary using
division method.

RemainderQuotientDivision

4

5

6

3

Example Binary to Decimal
Conversion

(addition Method)

Convert 10101102 to decimal

1248163264128

2021222324252627

Example Binary to Decimal
Conversion

(addition Method)

Convert 110100102 to decimal

1248163264128

2021222324252627

Labeling a Binary Number

 We need a way to tell a computer the
difference between 101010 and 10102

 In textbooks we use subscripts (like
above)

 In this class a leading 0b sign will show a
binary value.

 Some other methods include a leading %
or a B at the end.

7

8

9

4

Binary Numbers (Definitions)

 The bit to the left is the
High Bit

 The bit to the right is the
Low Bit

 Note the lowest bit is
called “Bit 0”

1/23/2025 Number Systems 10

Binary Numbers (Definitions)

 Similarly the nibble to
the left is the High
Nibble

 The nibble to the
right is the Low
Nibble

1/23/2025 Number Systems 11

Base
16

Base2Base
10

Base
16

Base2Base
10

810008000000

910019100011

A101010200102

B101111300113

C110012401004

D110113501015

E111014601106

F111115701117

Hex – Base 16

10

11

12

5

Hex – Base 16

 Most commonly used in computers and
networking (error messages in windows and
MAC addresses)

 Why base 16? Because 4 bits can be converted
to decimal digits 0 -> 15.

1248

20212223

Example Decimal to Hex
Conversion

(Subtraction Method)

Convert 100 to Hex via Binary.

1248163264128

2021222324252627

12481248

Example Decimal to Hex
Conversion

(Subtraction Method)

Convert 200 to Hex via Binary.

1248163264128

2021222324252627

12481248

13

14

15

6

Example Hex To Decimal
Conversion

Convert A5 Hex To Decimal.

12481248

1248163264128

Example Hex To Decimal
Conversion

Convert 7D Hex To Decimal.

12481248

1248163264128

Why use Hexadecimal?

 Hex is easier to read than binary and it is less likely
to introduce errors (try copying down a list of 10 8 bit
binary digits and do the same with the same 10
values represented in HEX)

 Each hex digits requires one nibble (four bits) to
store in the computer’s binary memory (easy to
translate bin to/from hex)

16

17

18

7

Labeling a Binary Number

 We need a way to tell a computer the
difference between 1010 and 1016

 In textbooks we use subscripts (like
above)

 In this class, Hex will be represented by a
leading “0x” (0x10). Windows also uses
this method.

 In some programs a leading $ sign will
show a Hex value (0x10)

Other ways to store data in bits

Binary Coded Decimal

 Each Decimal Digit is represented by its 4
bit binary equivalent.

 EG

145

1 4 5

0001 0100 0101

 NOTE: This is not BINARY (145 dec to
binary would be 10010001)

19

20

21

8

Date

 We can use a techniques like bit fields and
packed data to store information like the date:

•We know the month can be represented by values 1-12 we use 4 bits
(which can represent values 0 – 15).
•The largest month has 31 days so we use 5 bits (which can represent
values 0 – 31)
•Here we represent the year using the last two digits of the year so 7 bits
are used (which can represent values 0 – 127)

Negative Numbers

Two’s Complement

 used to represent both positive and
negative numbers

 Give up MSB as a sign bit (1 -> negative)

 positive numbers are the same as they
would be without the two’s complement
representation.

Examples: 011012=1310

111012=-310
From: Chris Gregg - University of Va.

Converting to Two’s Comp

Method 1
(example 001102=610 Convert to -6 in 2’s complement)

 Flip all the bits
 11001 (this is the 1’s complement)

 Add 1
 11010

22

23

24

9

Converting to Two’s Comp

Method 2 – Shortcut
(example 001102=610 Convert to -6 in 2’s complement)

 Start at least significant bit (the farthest to
the right), and copy 0s until you get to a 1
(also copy the 1): 10

 Then flip the rest of the bits:11010

Why 2’s Comp?

 Only one form of 0.

 Easy to subtract:
• Just Add!

0100 (410)

+1101 (-310)

0001 (110)

It works!

Why 2’s Comp?

Just Add!
1011 (-510)
+0010 (210)

1101 (-310)

It works!

25

26

27

10

Floating Point Numbers

 Computers use IEEE Standard 754 for
storing Floating Point Numbers in Binary

https://www.h-schmidt.net/FloatConverter/IEEE754.html

 Values are stored in 3 bit fields
 Sign Bit

 Exponent Field

 Mantissa Field

From: http://steve.hollasch.net/cgindex/coding/ieeefloat.html

Floating Point Numbers

 Sign Bit
 0 denotes a positive number

 1 denotes a negative number

Floating Point Numbers

 Exponent
 Can represent both positive and negative exponents.

 A bias is added to the actual exponent in order to get
the stored exponent.

 For IEEE single-precision floats, this value is 127.
Thus,

 an exponent of zero means that 127 is stored in
the exponent field.

 A stored value of 200 indicates an exponent of
(200-127), or 73.

 Note: exponents of -127 (all 0s) and +128 (all 1s) are
reserved for special numbers.

28

29

30

11

Floating Point Numbers

 The Mantissa (aka significand)
 represents the precision bits of the number. It

is composed of an implicit leading bit and the
fraction bits.

Floating Point Numbers

 Single Precision (32 Bit - 127 Bias)

 Double Precision (64 bit – 1023 Bias)

 Diagrams from: https://www.h-schmidt.net/FloatConverter/IEEE754.html

ASCII

 American Standard Code for Information
Interchange (ASCII)

 Used to represent letters and symbols

 Standard was adopted in 1963

31

32

33

12

ASCII

 Broken into 4 groups of 32 characters
 Group 1 (0x00 to 0x1F) – Non Printable

control characters

 Group 2 (0x20 to 0x3F) – punctuation, special
characters and numeric digits

 Group 3 (0x40 to 0x5F) – Letters ‘A..Z’ and
some other characters

 Group 4 (0x60 to 0x7F) – Letters ‘a..z’ and
some other characters.

 http://asciitable.com

Op Codes

 Computers store instructions, called
Operation Codes (or Op Codes) in
memory as binary values.

 Each Microprocessor uses a different set
of op codes.

 Example

 0x1B tells a 68HC11 to Add two values

 The same value tells an 80x86 processor to subtract
two numbers

Context!

 In a computer a value stored in memory
cannot be interpreted unless it is put in
context by a program!

34

35

36

