TECH 3233
Lab #6
Interrupts

Ver INT/TOF - 0.6

In this experiment we will use both external interrupts (INTO and INT1) and a Timer Overflow Interrupt
to turn on and off a flashing LED.

Flashing an LED
If you recall, in Lab 3 we blinked the onboard LED by using the following code:

#include <atmel start.h>
#include <avr/io.h>
#include <util/delay.h>

int main (void)

{

/* Initializes MCU, drivers and middleware */

atmel start init();
DDRB = 0b00100000; // configure pin 5 of PORTB as output
(digital pin 13 on the Arduino Uno)

while (1)

{
PORTB = 0b00100000; // set 5th bit to HIGH

_delay ms (1000);
PORTB = 0b00000000; // set 5th bit to LOW
_delay ms(1000);

}

But, after the setup, all we did in main was turn on a bit, pause, turn off a bit, pause and repeat. But
what if we want to make better use of the processor while waiting for the next on/off? We can use
interrupts to allow the processor to do “other things” while still blinking the LED at a constant rate.

To do this we will use TIMERO and the Overflow Interrupt.

| OCROA | | TCNTO | | OCROB |
¥

Figure 1- TIMERO Overview

Timer0, can be used to measure and generate square waves, but in this experiment, we are just using
the free running 8-bit timer (TCNTO) and the Timer Overflow (TOVO).

TCNTO just counts at a known interval. That interval is defined by the OSC on the Arduino board
(16MHz) and the Timer Prescaler defined by TCCROB Register:

TCCROB - Timer/Counter Control Register B

Bit 7 a 5 4 3 2 1]
D25 (0x45) I FOCOA | FOCOB | — | - | WGMO2 | CS02 | CSs01 | CS00 I TCCROB
ReadWrite w [R R R RAW RN RAW

Initial Value 0 0 0] 0 0 0 0

Table 15-9. Clock Select Bit Description

2 1 0 Description

Mo clock source (Timer/Counter stopped)

clk,;o/(No prescaling)

clk,,/8 (From prescaler)

o ol oo

-

clkyo/256 (From prescaler)

0
1 0
1 1
1 1

If external pin modes are used for the Timer/CounterQ, transitions on the TO pin will clock the counter even if the
pin is configured as an output. This feature allows software control of the counting.

clkyn/1024 (From prescaler)

External clock source on TO pin. Clock on falling edge.

0
1
0
1 clk,/64 (From prescaler)
0
1
0
1

External clock source on TO pin. Clock on rising edge.

(For this experiment FOCOA and FOCOB should be left at 0)

So if CS02:CS00 was 001, TNCTO would increment by one every clock cycle (since it is clk/(no presscaling)
it would increment at a frequency of 16MHz or every 63pSec.

If we use CS02:CS00 as 101, TCNTO would increment at 16Mhz/1024, or 15625HZ or once every 64uSec.

Since we wish to flash the LED 1 sec on then 1 sec off, we could in theory, use any prescaler, but any
prescale value we use will still be much lest than 1 second. For example, lets take the clk/1024 prescaler:

16 MHz
fscatea = m

= 15625 Hz
1

fscaled
= 64uSec

timecoyunt =

toverflow = 256 * timegoyn;
= 16.384mSec

So we need

1Sec

16.384mSec
= 61

Number of Overflows =

So, for this we will need to add a counter within the interrupt to count how many times the interrupt
has occurred, then every 61 interrupts we toggle the LED. (so an “IF” inside the interrupt, looking at the
counter)

The Timer does have different operational modes. For this experiment we will leave it in NORMAL Mode
(Mode 0) as defined by this table:

Table 15-8. Waveform Generation Mode Bit Description

Timer/Counter

Mode of Update of TOV Flag
Mode WGM02 WGM01 WGMO00 Operation TOP OCRx at Set on

0 0 0 0 Normal 0xFF Immediate MAX

1 0 0 1 FRLLEES || mr TOP BOTTOM
Correct

2 0 1 0 CTC OCRA | Immediate MAX

3 0 1 1 Fast PWM 0OxFF BOTTOM MAX

4 1 0 0 Reserved - - -

5 1 0 1 WM. Phase | ocra | TOP BOTTOM

6 1 1 0 Reserved = = =

T 1 1 1 Fast PWM OCRA BOTTOM TOP

Notes: 1. MAX = 0xFF

2. BOTTOM = 0x00

Figure 2- Timer Modes of Operation
Bit WGMO2 is found in register TCCROB (already discussed) and the other two bits can be found in:

TCCROA - Timer/Counter Control Register A

Bit 7 & 5 4 3 2 1 0
ox24 (ox44) [cOMoAT T comeal | comosl | comesl - - | WGMO01 | WGM0O | Tccroa
Fead/Write RIW R RIW RIAW R R RIW RAW
Initial Value 0 0 i o 0 0 0 0

(We will not be using the high nibble bits in this experiment, just leave them at zero)

In Normal Mode, TCNTO counts from 0 — 255 then resets back to 0 and an Overflow. Other modes will be
explained when needed.

Lastly, we will need to turn on the Timer Overflow Interrupt Enable bit found in:

TIMSKO — Timer/Counter Interrupt Mask Register

Bit 7 a 5 4 3 2 1 0

(0x2E) T 1 - 1 - 1 - 1 — JOCIo0B | OCIEOA | TOIE0 | TIMSKO
Read\Write R R R R R RW Rw Rw

Initial Value 0 o 0 o o o 0 0

+ Bits 7:3 — Reserved
These bits are reserved bits in the ATmegad8A/PA/BBA/PA/GBAPASIZE/P and will always read as zero.

+ Bit 0 — TOIED: Timer/Counter0) Overflow Interrupt Enable

When the TOIED bit is written to one, and the I-bit in the Status Register is set, the Timer/Counter0 Overflow
interrupt is enabled. The comresponding interrupt is executed if an overflow in Timer/Counter(occurs, 1.e., when
the TOWD bit is set in the Timer/Counter 0 Interrupt Flag Register — TIFRO.

(we will not be using OCIEOB or OCIEOA — output compare interrupts for this experiment so they will be
explained in a latter lab, just leave them 0 for this lab)

Don’t forget, since this is a MASKABLE INTERRUPT, you must execute the SEI(); command to enable the
Interrupt Flag in the Flag Register for the interrupt to be enabled.

External Interrupts (INTO and INT1):

To turn on/off the flashing led we will be using both external interrupts (INTO and INT1)

In addition to setting up DDRD and using PORTD, you will need to use the following registers to set up
the external interrupts (INTO and INT1):

EIMSK - External Interrupt Mask Register

Bit 7 6 5 B 3 2 1 0
w030y =] - | - | - | - - | INT1 | INTO | EIMSK
Read/Write R R R R R R RW RAY
Initiad Value 0 0 0 0 0 0 0 0

* Bit7:2 - Reserved
These bits are unused bits in the ATmega48A/PA/88A/PA/168A/PA/328/P, and will always read as zero.

+ Bit1=INT1: External Interrupt Request 1 Enable

When the INT1 bit is set (one) and the [-bit in the Status Register (SREC) is set (cne), the external pin interrupt
is enabled. The Interrupt Sense Control1 bits 1/0 (ISC11 and ISC10) in the External Interrupt Control Register A
(EICRA) define whether the external interrupt is activated on rising and/or falling edge of the INT1 pin or level
sensed. Activity on the pin will cause an interrupt request even if INT1 is configured as an output, The
corresponding interrupt of External Interrupt Request 1 is executed from the INT1 Interrupt Vector.

* Bit 0 - INTO: External Interrupt Request 0 Enable

When the INTO bit is set (one) and the |-bit in the Status Register (SREG) is set (one), the external pin interrupt
is enabled. The Interrupt Sense Control0 bits 1/0 (ISC01 and ISC00) in the External Interrupt Control Register A
(EICRA) define whether the external interrupt is activated on rising and/or falling edge of the INTO pin or level
sensed. Activity on the pin will cause an interrupt request even if INTO is configured as an output. The
corresponding interrupt of External Interrupt Request 0 is executed from the INTO Interrupt Vector.

EICRA - External Interrupt Control Register A

The External Interrupt Control Register A contains control bits for interrupt sense control.

Bit 7 6 5 4 3 2 1 0
(0x69) I - - - - ISC11 ISC10 | 1SC01 ISC00 EICRA
Read/Write R R R R RW RW RW R/W
Initial Value 0 0 0 0 0 0 0 0
ISCx1 | ISCx0
I e W o

And remember that we need to use the correct Interrupt Service Routine (ISR) names as defined by
ATMEL Studio:

Interrupt Vector Name

External Interrupt Request 0 INTO_vect
External Interrupt Request 1 INT1_vect

And lastly to turn on all maskable interrupts by using the c function:

sei();

Requirements:

Using only interrupts INTO, INT1 and Timer0 (Timer Overflow Interrupt), create a program that will flash
the LED built onto the Arduino board and control by pin 13 (PB5). It should flash at the rate of one
second on and one second off.

Using the prewired push button switches shown below:

Connect SW1 to D2 (PD2), the SW2 to D3 (PD3) and Vcc (+5v) and ground (as shown above).
Write a program that will do the following:

e On arising edge of PD2 (INTO) — flash the LED
e On afalling edge of PD3 (INT1) — stop flashing the LED and ensure it is off

Even though you do not have to put anything inside the While(1) loop in main, we will print the value of
the 0-61 counter value to the screen using printf.

Submit the commented code in a zip file via online submission for credit.

