
1

TECH 3233
Lab #5

Analog to Digital Converters
Ver 2.0

In this experiment we will use the built in ADC Converter to read a Potentiometer display ADC out, and
the Voltage on Input pin.

Note: Make sure your read the ENTIRE LAB HANDOUT before starting the project Important information
on setting the project to use printf is included that must be done while starting the project)

The registers associated with the ADC in the Atmel 328P are as follows:

2

For channels ADC0-ADC7 make MUX3..MUX0 equal to the channel number. Beyond the value 0b0111
(chn 7) they are as follows:

3

The ADC 10bit answer will be found in ADCL and ADCH registers (since 10 bits cannot fit in one 8 bit
register). The ADLAR register defines the alignment (MSB in ADCH Bit 7, when ADLAR =1 OR MSB in
ADCH BIT 1 when ADLAR=0) as shown below:

 ADCH ADCL
ADLAR=0 - - - - - - ADC9 ADC8 ADC7 ADC6 ADC5 ADC4 ADC3 ADC2 ADC1 ADC0
ADLAR=1 ADC9 ADC8 ADC7 ADC6 ADC5 ADC4 ADC3 ADC2 ADC1 ADC0 - - - - - -

Note that in Atmel Studio, the above ADCH and ADCL are combined in a 16bit register named ADC (not
in Atmel documentation, found via the iom328p.h file)

There are two other registers associated with the ADC. They are ADCSRB which controls when the ADC
conversion is started (not needed for this lab – leave as free running), and DIDR0 which turns of the
ability to use a bit as a digital input pin as well as ADC. See Atmel documentation for more info on these
registers.

Lastly, although not mentioned in the textbook, you do need to turn off the Power Reduction Mode for
the ADC (reg PRR bit PRADC = 0). If left in power reduction mode, the ADC registers will not update
and the ADC will not operate.

4

Atmel studio seems to write a 1 to all the bits in PRR, so you must write a 0 to the bits associated with
the hardware you wish to use. REMEMBER THIS FOR FUTURE LABS!

Write to this register RIGHT AFTER the atmel_start_init(); line. Writing before it will have no effect, to
other hardware control registers before turning on the hardware with the PRR register will have NO
effect!

A few other notes:

1. Since we are using an Arduino board with a 16MHz clock on board, and the successive
approximation ADC cannot be clocked faster than 200K, we can only use the /128 pre-scaler for
the clock.

2. We will use AVcc for our Reference Voltage (this is 5v on the Arduino board)

To wire the Potentiometer (Pot), we wire it as a voltage divider (with the wiper arm of the Pot to the
ADC pin (AD3) and the other wires go to +5V and GND

Write a program that will read an ADC input connected to the circuit (above) and display ADC out, and
Voltage out every half second.

You should be able to figure out the formula for calculating the Voltage out (given the number of bits
of the ADC and the Vref = 5V).

The output should be in comma delimited format (#,#<cr><lf>).

Since we want to print out the ADC value and Voltage, we will be using PRINTF for the first time.

5

To set up ATMEL studio to use printf, start the project as you did in LAB3 procedure Step 1, but in
addition to selecting the ATmega328-PU, you will need to add the USART. To do this: Find Drivers (1
below) and use the scroll bar (2) to find USART(3), in the box next to it (4), put in a value of 1.

Then hit “Create Project”.

You should have:

Change the CPU clock speed to 16MHz as you have in the past, but now also click on USART_0 and scroll
down to find:

6

And put a check in the box (no other changes are required). Now hit “Generate Project”.

This will allow you to use printf in your program.

Since the voltage will be a floating point number, you MUST tell the compiler to enable the floating
point printf (this is NOT included by default to save memory space).

To add floating point capabilities you need to do the following (from
https://startingelectronics.org/articles/atmel-AVR-8-bit/print-float-atmel-studio-7/)

In Atmel Studio 7 on the top menu, click Project → <project name> Properties... to bring up the
properties page for the currently open project. The image below shows the menu in Atmel
Studio 7 for a project named print_float_mega_2560.

Click Toolchain in the page at the left of the project properties page and then General under the
AVR/GNU Linker item as shown in the image below. Finally check the Use vprintf library(-Wl,-
u,vfprintf).

https://startingelectronics.org/articles/atmel-AVR-8-bit/print-float-atmel-studio-7/

7

Now click Miscellaneous under the AVR/GNU Linker item and add the following in the Other
Linker Flags box as shown in the following image.

-lprintf_flt

Save the changes to the linker options (Ctrl + S) and then rebuild the project. Projects that use
sprintf and printf type functions should now be able to print floating point numbers to strings or
standard output.

Since no “Screen” is attached to the Arduino, we use the same USB / COM port used to send programs
to the board to send messages to a dumb terminal program on the PC. To open this, use the windows
search bar to search for “putty” and click on the program found. You should get the following window:

8

Select Serial (1) and then change COM1 to whatever Com port the Arduino is on (same port as the setup
for sending code).

NOTE: If you need to change your program and resend it to the Arduino, you will need to CLOSE PUTTY
before you send, or you will get an error that says something about the port in use when you try to send
the code to the board)

Once you have collected data for a while, copy and paste all data (right click on Putty’s title bar and
select “Copy all to clipboard”, paste the data into Notepad (or notepad++) and save as a .csv file.
Insert that into the root directory of your project file before zipping (this will act as your demo) and
submit your fully commented code via electronic submission for full credit.

